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We simulate advective transport in bond percolation clusters at the critical point. We compute the histogram
of flow speeds in each bond of the backbone and find the multifractal spectrum for two-dimensional lattices
with linear dimension L�2000 and in three dimensions for L�250. We demonstrate that in the limit of large
systems all the negative moments of the velocity distribution become ill-defined. However, to model transport,
the velocity histogram should be weighted by the flux to obtain a well-defined mean travel time. Finally, we
use continuous time random walk theory to demonstrate that anomalous transport is observed whose charac-
teristics can be related to the multifractal properties of the system.

DOI: 10.1103/PhysRevE.75.011124 PACS number�s�: 05.40.�a, 05.45.Df, 47.53.�n

I. INTRODUCTION

The static and dynamic properties of fractal media have
been the subject of numerous analytical and numerical treat-
ments with a variety of applications including turbulence �1�,
forest fires �2�, dielectric breakdown �3�, growth properties
�4�, viscous fingering �5�, and flow in heterogeneous porous
media �6,7�. One exemplar of a fractal structure, which has
been used as an analogue for porous media, is a percolation
cluster at its threshold. Analyzing flow in such structures has
provided insight into the transport physics of real-life sys-
tems �2,7�. Many of the early studies into these networks
computed the moments of the resultant velocity distributions
�8–10� or found average macroscopic properties such as con-
ductivity or permeability �11�. In this work, we are interested
in using these distributions to model advective-dominated
transport. Lopez et al. �12� proposed scaling laws for the
breakthrough curves for advective transport between wells in
two dimensions. Here we extend the previous studies on
multifractal spectra in two-dimensional percolation clusters
�10� to larger system sizes and to three dimensions. We also
relate the moments of the velocity distribution to computed
transport behavior.

The distribution of bond velocities, P�V�, within a thresh-
old percolation cluster has been shown to be multifractal
�13,14�. We define this P�V�dV as the probability that a given
bond, ij has a velocity Vij in the range V−dV /2�Vij �V
+dV /2. For large L the number of bonds n�V� with velocity,
V�L−� �15�, in a logarithmic increment d ln V, will scale
with an infinite set of exponents f��� with the form

n�V�d ln�V� � Lf���d ln V , �1�

where f���=ln�n�V�� / ln�L� and �=−ln�V� / ln�L� �13,16�.
The moments M�q� of this velocity distribution which we
define as

M�q� � ��
∀ij

Vij	 =
1

Nr
�
∀r

�
∀Vij�0

Vij , �2�

where Nr is the number of realizations, do not follow a con-
stant gap length scaling and require an infinite set of expo-
nents ��q�= �f��*�−q�*�
q = df / d�
�=�* to characterize �15,16�.

The flow velocity is equivalent to the current in a random
resistor network. However, for transport, it is not correct to
weight the velocity distribution uniformly between bonds.
This would imply that a particle moving in the flow field is
equally likely to reside in each bond in the backbone regard-
less of its velocity. Instead, the histogram of particle veloci-
ties must be weighted by the flux �velocity� �17�.

As we weight our f��� spectra with flux, before we use it
to find the travel time moments in our transport simulations
we must define a new fv���,

fv��� =
ln�Vn�V��

ln�L�
, �3�

where

fv��� = f��� − � �4�

and a new flux weighted velocity distribution Pv�V�,

Pv�V −
dV

2
� Vij � V +

dV

2
�dV =

n�V�V
NV�0

dln V , �5�

where NV�0 is the number of nonzero velocity bonds in the
system. This definition helps resolve the debate in the litera-
ture over the negative moments of the velocity distribution
�10,18–20�. It has been argued that the moments, M�q�, only
exist for q�qc where qc=0. This implies that the mean tran-
sit time �q=−1� is ill-defined since particles will be stuck for
arbitrarily long periods in a finite fraction of low velocity
bonds. However, using flux weighting qc becomes −1 imply-
ing that a mean transit time is defined although the standard
deviation �q=−2� is not, suggesting that the effective disper-
sion coefficient of the transport will diverge in the limit as
t→�. This is anomalous transport that has been studied in
the context of continuous time random walk �CTRW� theory
�21–23�. Our simulation results, shown later, are indeed con-
sistent with qc=0 or −1 for uniform and flux weighting re-
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spectively and we show that particle transport can be pre-
dicted using CTRW and the measured fv��� spectrum.

II. METHOD

We investigated flow on square and cubic bond percola-
tion clusters at their critical point. We modified the algorithm
in Ref. �20� to extract a threshold percolation cluster in
which the bonds are connected together at the nodes. We
labeled each node, i, with an index from 0 to N−1, where N
was the total number of nodes. We then visited each of these
nodes in turn connecting them to their nearest neighbor j

with a bond of unit length if j	 i and a randomly generated
number, pj between 0 and 1 was less than or equal to the
occupation probability p. We set the value of p to be 0.5 and
0.2488 in two and three dimensions, respectively, i.e., the
critical values of p presented in the literature �2�. In two
dimensions the two y axes were periodic, i.e., a point on one
y boundary could connect to a point on the other boundary
with the same x coordinate, while in three dimensions the
bounding y and z planes were periodic. We then sorted the
system into clusters using a tree-based clustering algorithm
�24,25�, determined if a spanning cluster existed, extracted it
from the system if it did or discarded the grid if it did not.
The flow field was then determined by imposing an external
pressure field on the two x boundaries assuming flux conti-
nuity and Darcy’s law at each node:

�
∀j

Kij�Pi − Pj� = 0 ∀ i , �6�

where P is the pressure and i and j label nodes connected by
bond ij having a conductance Kij which we assumed to be of
unit magnitude.

We then obtained a system of linear equations which we
solved by inverting the resulting sparse matrix using an al-
gebraic multigrid solver �26�. Using this solution we calcu-
lated the flux in each bond. If the maximum bond velocity
was less than the total inlet velocity there was no single bond
present in the lattice able to carry the entire flux of the sys-
tem. These bonds are known in the literature as red bonds
and are a key criteria for criticality in percolation clusters
�2�. These realizations were thus regarded to be anomalies
due to correlations in the random number generator and
above the critical point. These grids were subsequently re-
jected and the algorithm repeated.

Visual examples of the velocity field calculated for two
critical percolation clusters in two and three dimensions are

FIG. 1. �Color online� A two-dimensional percolation cluster at
its critical point with linear dimension L=1000. The colors indicate
the logarithm of the absolute velocity in the bonds. For illustrative
purposes dead-ends are shown with a small but finite velocity of
1
10−12 though in the simulations they carry no flow.

FIG. 2. �Color online� A three-dimensional percolation cluster at
its critical point with linear dimension L=200. The colors indicate
the logarithm of the absolute velocity in the bonds. Dead-ends are
set to a small but finite velocity of 1
10−10.

FIG. 3. Plot showing the uniform �upper curves� and flux-
weighted �lower curves� f��� spectra in two dimensions for systems
of size; upper curves, L=2000 �asterisks�, L=1000 �dots�, L=500
�open circles�, L=250 �crosses�; lower curves, L=2000 �triangles�,
L=1000 �inverted triangles�, L=500 �diamonds�, and L=250
�squares�.
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shown in Figs. 1 and 2 with the potential gradient applied
from left to right and top to bottom, respectively. The uni-
form f��� and flux weighted fv��� spectra were then found
from the logarithmic binning of this velocity distribution
�8,15�.

We also modeled transport in the advective limit by track-
ing the movement of 105 random walkers within the system.
Each particle was assigned to a node on a line or plane that
was one-quarter of the way into the structure with a prob-
ability weighted by the flux leaving that node. We then moni-

tored the progress of each walker from node to node using a
generalized semianalytical particle tracking algorithm
�27,28�. Each transition occurred in an advective time ta
=Lbij /Vij where Lbij is the i− jth bond length taken as 1. We
assumed that complete mixing occurred at each node with
the probability of arriving at a nearest neighbor, pij being
proportional to the flux in the corresponding bond ij �27,28�:

pij =
Vij

�
∀ij

Vij

for Vij 	 0, pij = 0 otherwise, �7�

where Vij 	0 defines a flux leaving node i heading in the
direction of node j. We recorded the total time for each par-

ticle to transit the system, the average displacement l̄�t� and
the standard deviation of the concentration plume ��t� for
100 different realizations.

III. RESULTS

In Sec. III A we show the flux weighted fv��� and tradi-
tional f��� plots and compare their salient features to those
presented in the literature. In Sec. III B we discuss the scal-
ing of the quiet side �q�0� of the velocity spectrum while in
Sec. III C we look at the results of the transport simulations
and relate these to CTRW theory.

A. Multifractal spectra

In Figs. 3 and 4 we show the uniform and flux weighted
spectra in both two and three dimensions, respectively. We
validate our work by extrapolating the plots of fmax���
�
f���
df/d�=0 and f�0� vs 1/ ln L in Fig. 5 to the 0 of the
abscissa. It is known that in the limit of L→� these plots
will give the fractal dimension of the backbone �db� and the
red bonds �drb�, respectively �5,16�. From our work we found
values of 1.64±0.01 and 1.89±0.03 for the fractal dimension
of the backbone in two and three dimensions, respectively,

FIG. 4. Plot showing the uniform �upper curves� and flux-
weighted �lower curves� f��� spectra in three dimensions; upper
curves, L=250 �triangles�, L=200 �inverted triangles�, L=175 �dia-
monds�, L=150 �
�, L=125 �squares�, L=100 �dots�, L=75 �aster-
isks�, L=50 �open circles�, L=25 �crosses�; lower curves, L=250
�asterisks�, L=200 �open circles�, L=175 �crosses�, L=150 �six
pointed stars�, L=125 �
�, L=100 �dots�, L=75 �five pointed stars�,
L=50 �right-pointing triangles�, L=25 �left-pointing triangles�.

FIG. 5. A plot showing fmax��� and f�0� vs 1/ ln L for all the
systems investigated. The dots represent the plot of fmax��� in three
dimensions; the open circles, fmax��� in two dimensions; the aster-
isks, f�0� in three dimensions; and the crosses, f�0� in two
dimensions.

FIG. 6. Plot showing the exponent b of a linear late time fit of
the f��� spectra vs 1/ ln�L� in both two �crosses� and three dimen-
sions �dots�.
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which corresponded extremely well with the current best di-
rect numerical estimates of 1.64 and 1.88 �29,30�. We were
also able to get an excellent match of 0.76±0.01 and
1.13±0.01 for the values of drb in two and three dimensions
as compared to the values of 0.75 and 1.13 that are in the
literature �2,31�.

B. The low velocity (quiet side) of the flux distribution

The low velocity side of the velocity distribution is now
widely accepted as a power law in velocity of the form
P�V�dV�Vb−1dV=Vbd ln V where b�0 �20,32�. This leads
to f���=−b� for large �, with qc=−b. It has been suggested
that this power-law exponent scales with system size as
�18,20�

b�L� = b� +
D

ln L
+ ��L� , �8�

where b� is the scaling in the infinite limit and ��L� is a
correction factor that decays faster than 1/ ln L �10�. It has
been proposed that this exponent �b�� could have a finite
value of about 0.25 �32� while Ref. �20� concluded from
numerical simulations that this value is 0. This was later
corroborated by Barthelemy et al. �10� who also obtained a
value of 0 using a larger range of system sizes �L�1000�.

We estimate a value of b from the slope of a linear fit to
f��� for �	1. In Fig. 6, b is plotted as a function of 1/ ln L
in two and three dimensions. Extrapolating L→� indicates
that b�=0±0.001 consistent with the results of Ref. �10� in
two dimensions. However if we consider flux-weighted dis-
tributions bv�=b�+1=1. This indicates that for transport the
mean travel time is defined.

C. Transport simulations

According to CTRW theory the probability that a particle
will move between two nearest neighbor nodes, in a time

interval t to t+dt is defined as ��t�dt �21�. If, at late times,
this function can be approximated by a power law in time,
we can write ��t�� t−1−
 with 
�2 describing transport
which is anomalous �33,34�. For 1�
�2 it can be shown

�34–36� that the average displacement of the plume, l̄�t�,
scales linearly with time with a finite mean transition time
while the standard deviation of the plume location, ��t�
� t�3−
�/2 indicating a divergent dispersion coefficient in the
limit of infinite time, while the concentration C�t� arriving at
an extraction line/production well or plane scales as t−1−
.

For 0�
�1, l̄�t� and ��t�� t
, while C�t�� t−1−
. For 

	2, transport approaches the Gaussian limit with C�t�
�e−�t, l̄�t�� t, and ��t�� t1/2 with � being a medium specific
parameter.

1. Relating the transport and the velocity distributions

We now derive a relationship between the transit time and
the velocity distribution. It has already been established that
P�V��Vb−1. We also know that the transition time t�1/V
and dV� t−2dt, so substituting for V we can write

P�V�dV � Vb−1dV � �1

t
�b−1

t−2dt � t−�b+1�dt . �9�

Therefore by comparison with the scaling of ��t� and P�V�,
we get


 � b �10�

while for Pv�V�, we find that

Pv�V�dV � V 
 Vb−1dV � �1

t
�b

t−2dt � t−�b+2�dt , �11�

thus


v � b + 1 � bv. �12�

We conducted 100 numerical transport simulations on
several different realizations of spanning percolation clusters
for each lattice size of interest. We then tabulated and binned
all the results in two and three dimensions and used this to
estimate the values of 
v that we show in Tables I and II,
respectively. These estimates were obtained from �i� the
fv��� plot where we find as best-fit slope, bv for �	1 using
the fact that 
v=bv; �ii� the standard deviation of the particle
location as a function of time given by

��t� =
�
i=1

Np �li�t� − l̄�t��2

Np
, �13�

where the sum is over all Np particles, li�t� is the displace-
ment of the particle from the origin in the average flow �x�
direction, l̄�t� is the average displacement of the plume given
by

l̄�t� = �
i=1

Np li�t�
Np

�14�

and 
v is a best-fit to ��t�� t�3−
v�/2 at late time: one example
is shown in Fig. 7; and �iii� from the outlet concentration,

TABLE I. Table showing the best-fit value of 
v for different
system sizes in two dimensions.


v

L 500 1000 1500 2000

V 1.4±0.3 1.3±0.2 1.3±0.2 1.3±0.2

��t� 1.6±0.2 1.6±0.2 1.6±0.2 1.6±0.2

C�t� 1.7±0.2 1.7±0.2 1.7±0.2 1.7±0.2

TABLE II. Table showing the value of 
v for different system
sizes in three dimensions.


v

L 50 75 100 150 200

V 1.4±0.3 1.4±0.3 1.4±0.2 1.3±0.2 1.3±0.2

��t� 1.9±0.3 1.9±0.3 1.9±0.2 1.8±0.2 1.8±0.2

C�t� 1.5±0.2 1.5±0.2 1.4±0.2 1.4±0.2 1.4±0.2
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C�t�, with 
v as a best fit to C�t�� t−1−
v at late times with
C�t�dt being proportional to the number of particles leaving

the system in a time dt. In all cases we find that l̄�t�� t
consistent with 
v	1.

The values of 
v estimated from the velocity distribution
and the transport simulations are broadly consistent. How-
ever, relating 
v and bv assumes that the bond velocities are
spatially uncorrelated. This is not necessarily the case for
percolation networks that have a hierarchical clustered struc-
ture which may require a general ��s , t� �37� to obtain a
closer consistency between the two distributions. In two di-
mensions the computed 
v from transport is larger than esti-
mated from the velocity distribution, indicating less anoma-
lous transport. In three dimensions, the value of 
v

determined from C�t� is consistent with the value from the
velocity distribution, but the dispersion is less anomalous.

2. Universal scaling of the transit time curves

From a practical standpoint a key transport measure is
C�t� since this quantifies the outlet flux of the particles,
which for contaminant transport is equivalent to the rate at
which pollutant can be removed from the system. In this
section we find a universal curve of C�t� for transport in
different system sizes. These curves when denormalized for a
system of interest could be used as a first estimate for the
transit distribution without having to perform any numerical
experiments.

As in all our simulations we use the same number of
particles regardless of L, there will be no functional depen-
dence of �0

�C�t�dt with the system size. This, though, is not
true for the mean transit time of C�t�, tm. It can be shown that
tm is controlled by the −1th moment of the velocity distribu-
tion. The time taken for a single particle to transit the system
ts is given by

ts = �
∀ij

Lbij

Vij
= �

∀ij

1

Vij
. �15�

If we average over all particle paths the mean transit time
would be given by

tm =
1

Np
�
∀Np

�
∀ij

1

Vij
=��

∀ij

1

Vij
	 � Mv�− 1� . �16�

Therefore tm would scale as L�v�q=−1� where �v�q�= �fv��*�
−q�*�q=
dfv / d�
�=�*

We find, using Figs. 3 and 4, that �v�−1�=1.67 in two
dimensions and 2.06 in three dimensions. Thus when we plot
C�t� vs t /L�v�−1� we obtain a universal curve as shown in
Figs. 8 and 9.

FIG. 7. Figure showing the scaling of the standard deviation of
the plume displacement with respect to time in two dimensions for
a system of size L=2000 �crosses� and in three dimensions for a
system of size L=200 �asterisks�.

FIG. 8. Figure showing the universal scaling of the outlet con-
centration C�t� for different system sizes L=2000 �dots�, L=1500
�asterisks�, L=1000 �open circles�, and L=500 �crosses� in two
dimensions.

FIG. 9. Figure showing the universal scaling of the outlet con-
centration C�t� for different system sizes L=200 �
�, L=150 �dots�,
L=100 �asterisks�, L=75 �open circles�, and L=50 �crosses� in
three dimensions.
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IV. CONCLUSIONS

We have studied the multifractal, f��� spectra of veloci-
ties for percolation clusters at threshold in two and three
dimensions. The results are consistent with f���=−b� for
large � with b→0 as L→�. For transport simulations, the
velocity histogram should be flux �velocity� weighted, since
particles are more likely to reside in the high velocity links.
This leads then to a velocity-weighted fv��� spectrum that
scales as −bv� for large � with bv→1 for L→�. This new
scaling means that the first moment of the transit-time distri-
bution is well defined.

We confirm this analysis through particle-tracking simu-
lations of advective-dominated transport. The scaling of
fv��� is consistent with a velocity probability histogram

Pv�V��Vbv−1dV or a transit time probability distribution
across a link of the form ��t�� t−1−
vdt with 
v=bv. From
CTRW theory this leads for 1�
v�2 to a linear scaling of
mean position with time, a standard deviation scaling ��t�
� t�3−
v�/2 and an outlet concentration C�t�� t−1−
v. Our
transport simulations corroborate these scaling laws.

Finally we show that the outlet concentration C�t� col-
lapses onto a universal curve when plotted against t /L�v�−1�

where �v�q� is the scaling of the qth moment of the flux
weighted velocity distribution.
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